Communications to the editor

CHEMISTRY OF LEUCOMYCIN. IX

IDENTIFICATION OF LEUCOMYCIN A_3 WITH JOSAMYCIN

Sir:

Leucomycin (Kitasamycin) is a basic macrolide antibiotic discovered by Hata et al. in 1953. Streptomyces kitasatoensis Hata was reported to produce many active components, namely leucomycins A₁, A₂, B₁~ B₄.^{2,3}) However, further studies conducted in recent years resulted in the isolation of leucomycins A₃~A₉. Furthermore, chemical structures of eight components of them^{4,5}) were determined. Josamycin is a macrolide antibiotic produced by Streptomyces narbonensis var. josamyceticus which was dis-

covered by Umezawa et al.⁶), and has quite similar biological properties to those of leucomycin; namely both of them show similar antibacterial spectrum and resistance pattern of macrolides which was reported by Mitsuhashi⁷). Furthermore, leucomycin A₃ ⁸) and josamycin show similar values in their physico-chemical properties (Table 1), and those two compounds are considered to be the same from the results of their structural studies⁹) that josamycin contains each one molecule of iso-valerianic acid, mycarose, and mycaminose and also, its lactone ring has aldehyde group (-CHO), methoxyl group (-OMe) and diene group (-C=C-C=C-C-).

Comparison of their TLC and IR-spectra proved that leucomycin $A_{\rm 3}$ and josamycin

Table 1. Physico-chemical properties of leucomycin ${\rm A_3}$ and josamycin ${\rm ^{6,8}})$

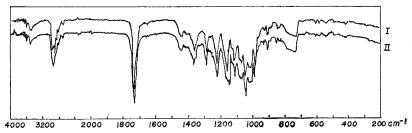

mycin A_3 (A_3) and josamycin (J)
Note: Kieselguhr G
0.5 mm
(benzene: acetone
2:1)
coloration: 20 %
II CO

Fig. 1. TLC of leuco-

and josamyem //		
	Leucomycin A ₃ 8)	Josamycin ⁶⁾
Melting point	120~121°C	130∼133°C
Optical rotation	$[\alpha]_{\rm D}^{25}$ -55.4° (c 1, CHCl ₃)	$[\alpha]_{\rm D}^{25}$ -70° (c 1, EtOH)
Value of pKa	6.70 (50 % EtOH)	7.1 (40 % EtOH)
Analysis	(Calcd) (Found)	
C (%)	60.93 60.57	60.63
H (%)	8.40 8.17	8.49
0 (%)	1.69 1.75	1.77
Formula	$C_{42}H_{69}NO_{15}$	C ₄₀ H ₆₉ NO ₁₄
UV spectrum	λ _{max} 231~232 (E _{1em} 351)	λ _{max} 232 (E _{1em} 325)
Solubility		
soluble	MeOH, EtOH, EtAc, BtAc, acetone, benzene, CHCl ₃	Same
insoluble	H ₂ O, petroleum ether	Same

Fig. 2. Infrared spectra of leucomycin A_3 (II) and josamycin (I) (CCl $_4$ method)

are completely the same, as explained in this report.

TLC of leucomycin A₃ and josamycin, recrystallized from benzene solution after extraction from commercial tablets, was conducted using a mixture of benzene and acetone (2:1) as developing solvent. Josamycin and leucomycin A₃, as shown in Fig. 1, gave the same Rf value (0.69). The josamycin mentioned above contained several

Fig. 3. UV-spectra of leucomycin A₃ and josamycin.

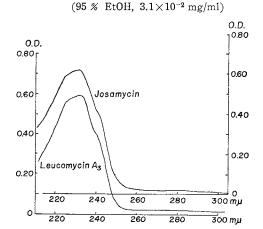
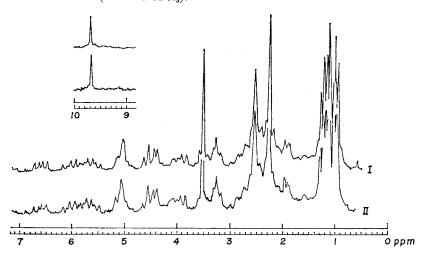



Fig. 4. NMR-spectra of leucomycin A₃(II) and josamycin (I) (100 MHz CDCl₃).

other minor active components visible on TLC. Further, purification of josamycin was accomplished by silica-gel chromatography with benzene and acetone, recrystallization from its benzene solution and finally drying at 60°C for a day. Its IR-spectrum is shown in Fig. 2, along with that of leucomycin A₃. No definite conclusion could be made from mixture melting point determination as these two substances do not show a sharp melting point. However. identity of the two compounds was confirmed by complete coincidence of their IRspectra, as well as UV- and NMR- analyses (Figs. 3 and 4).

Satoshi Ōmura*,**
Yukino Hironaka**
Toju Hata*,**

The Kitasato Institute* and Kitasato University** Minato-ku, Tokyo, Japan

(Received August 10, 1970)

References

 Ната, Т.; Y. Sano, N. Ohki, Y. Yokoyama, A. Matsumae & S. Ito: Leucomycin, a new antibiotic. J. Antibiotics, Ser. A 6:87~ 89, 1953

- WATANABE, T.: Studies on leucomycin. II. Preparative chromatography of macrolides on Amberlite IRC-50. Bull. Chem. Soc. Japan 33: 1100~1104, 1960
- WATANABE, T.: Studies on leucomycin. III. Isolation and properties of six antibacterial components in leucomycin complex. Bull. Chem. Soc. Japan 33:1104~1108, 1960
- cf. Omura, S.; M. Katagiri & T. Hata: The chemistry of leucomycin. VI. Structure of leucomycin A₄, A₅, A₆, A₇, A₈ and A₉. J. Antibiotics 21: 272~276, 1968
- 5) Omura, S.; M. Katagiri, T. Hata, M. Hiramatsu, T. Kimura & K. Naya: The allylic rearrangement of the hydroxyl group from C-9 to C-13 and the absolute configuration at C-9 of leucomycin A₃. Chem.

- Pharm, Bull. 16: 1402~1404, 1968
- 6) OSONO, T.; Y. OKA, S. WATANABE, Y. NUMAZAKI, K. MORIYAMA, H. ISHIDA, K. SUZAKI, Y. OKAMI & H. UMEZAWA: A new antibiotic, josamycin. I. Isolation and physicochemical characteristics. J. Antibiotics, Ser. A 20: 173~180, 1967
- MITSUHASHI, S.: Laboratory evaluation of josamycin. Chemotherapy 17: 567~571, 1969
- ÖMURA, S.; M. KATAGIRI, H. OGURA & T. HATA: The chemistry of leucomycin. I. Partial structure of leucomycin A₃. Chem. Pharm. Bull. 15:1529~1533, 1967
- Ōsono, T.: Studies on a new antibiotic, josamycin. "Future of chemotherapy" H. UMEZAWA & T. HATA (Eds), p. 277, University of Tokyo Press, Tokyo 1969